What’s New in FLOW-3D CAST 2022R2

FLOW-3D CAST 2022R2
FLOW-3D CAST 2022R2 mobile

What's New in FLOW-3D CAST 2022R2

With the release of the FLOW-3D CAST 2022R2 product family, Flow Science has unified the workstation and HPC versions of FLOW-3D CAST to deliver a single solver engine capable of taking advantage of any type of hardware architecture, from single node CPU configurations to multi-node parallel high performance computing executions. Additional developments include a new log conformation tensor method for visco-elastic flows, continued solver speed performance improvements, advanced cooling channel and phantom component controls, and improved entrained air functionalities.

Register for the FLOW-3D CAST 2022R2 What’s New Webinar on October 6 at 1pm ET.

Unified solver

We migrated our FLOW-3D products to a single, unified solver to run seamlessly on local workstations or on high performance computing hardware environments.

Many users run their models on laptops or local workstations, but in addition run larger models on high performance computing clusters. With the 2022R2 release, the unified solver allows users to exploit the same benefits of OpenMP/MPI hybrid parallelization from HPC solutions to run on workstations and laptops.

Example of performance scaling
Example of performance scaling using an increasing number of CPU cores
Example of mesh decomposition
Example of mesh decomposition for OpenMP/MPI hybrid parallelization

Solver performance improvements

Multi socket workstations

Multi socket workstations are now very common and capable of running large simulations. With the new unified solver, users using this type of hardware will generally see performance gains from being able to run models taking advantage of OpenMP/MPI hybrid parallelization that used to be only available on HPC cluster configurations.

Low level routines improved vectorization and memory access

Performance gains on the order of 10% to 20% have been observed for most test cases, with some cases yielding run-time benefits in excess of 20%.

Refined volumetric convective stability limit

Time step stability limit is a major driver in model runtime, with 2022R2, a new time step stability limit, 3D convective stability limit, is available in the numerics widget. For models that are running and convection limited (cx, cy, or cz limits) the new option has shown typical speed-ups on the order of 30%.

Pressure solver pre-conditioner

In some cases, for challenging flow configurations, run times can be drawn out due to excessive pressure solver iterations. For those difficult cases, with 2022R2, when a model iterates too heavily, FLOW-3D automatically activates a new pre-conditioner to help with pressure convergence. Tests have improvements in runtime anywhere from 1.9 to 335 faster!

Log conformation tensor method for visco-elastic fluids

A new solver option for visco-elastic fluids is available to our users, and is particularly effective for high Weissemberg numbers

Active simulation control extensions

Active simulation control functionalities have been extended to include phantom objects, commonly used for continuous casting and additive manufacturing applications, as well as for cooling channels, used in casting and in many other thermal management applications.

2022R2 Release Webinar

In this webinar, we will present the details of the unified FLOW-3D CAST core solver engine and explain how to take advantage of new features to optimize run times on workstations, where the benefits of HPC methods are now available even on single node hardware configurations. We look forward to presenting these new developments to the user community! Join us October 6th at 1pm EST.

Join us for the FLOW-3D 2022R2 Product Release webinar on October 6th at 1pm ET

Request More Information

FLOW-3D AM WELD Request Info

What additive manufacturing processes do you want to simulate? *
What laser welding processes do you want to simulate? *
FLOW-3D News
Privacy *
CSTsiteisloaded