METAL FLOW AND HEAT TRANSFER IN BILLET DC CASTING USING WAGSTAFF® OPTIFILL™ METAL DISTRIBUTION SYSTEMS

Bin Zhang and Dave Salee

Wagstaff Inc.
3910 N. Flora Road, Spokane Valley, WA 99216, USA
Outline

• Introduction
• Model Description
• Result and Discussion
 – Metal fill and temperature contour
 – Metal fill start time and fill complete time
 – Metal temperature contour and flow during run cast
 – Metal temperature history and metal heat loss
• Summary
• Acknowledgements
Introduction

Goal: Optimize the design of a metal distribution system to improve metal fill uniformity, obtain consistent start-up process control and premium quality billet

• Decrease total metal fill time and Optimize fill uniformity - eliminate bleed-out, butt defects (hot/cold butt separations)
• Reduce heat loss - obtain less temperature gradient across casting positions
• Minimize turbulence and pre-solidification - Maintain good process and metallurgical quality
Original, RapidFill™ and OptiFill™

Original: simple and maximized pit utilization

RapidFill™: improve the uniformity of fill and reduce the total fill time and overall heat loss; but require superstructure with motorized start dam and might reduces the maximum number of billet positions

Investigation: Original and OptiFill™ systems:
- Metal fill uniformity and metal residence time
- Thermal, fluid flow fields and heat losses

OptiFill™: draws desirable features from both RapidFill™ and the Original systems, thereby maintaining simplicity while optimizing metal fill performance.
Model Development

• Billet Systems
 - 7" 96 strands, 6063
 - Original = 165" × 60.0"
 - OptiFill™ = 165" × 60.0"
 - Cavity cross section area

• The Model
 - Turbulent model
 - Thermal buoyancy convection
 - Solidification

• Meshing
 - Cell size = ~10 mm
 - Total cells = ~1.9 million

• Initial Condition (IC) and Boundary Condition (BC) Assumptions
 - $T_{\text{inlet metal}} = 700 \, ^\circ \text{C}$
 - Constant metal height = 110 mm
 - $T_{\text{refractory}} = 27 \, ^\circ \text{C}$
 - Run cast speed = 2.17mm/sec. (130.2mm/min)
Metal fill and temperature contours ~5.0 sec. after dams are tilted open
Metal fill and temperature contours ~15.0 sec. after the dams are tilted open.
Metal Fill and Temperature Contour

Original

OptiFill™

Metal fill and temperature contours at cast start
Metal Fill Uniformity

The metal fill start time, fill complete time and residence time for the two systems

Original

OptiFill™
Temperature Contour during Cast

Metal temperature contours at ~100 sec. of casting (Cast Length ≈ 199 mm)
Temperature Contour during Cast

Metal temperature contours at ~350sec casting (Cast Length ≈ 742 mm)
Temperature Contour and Flow

Metal temperature and flow at ~350 sec. casting
(~ 6.5 cm from trough bottom, cast length ≈ 742 mm)
Temperature History and Heat Loss

![Graph showing temperature history and heat loss over time for various conditions, including HotEnd_Original, ColdEnd_Original, HotEnd_OptiFill, and ColdEnd_OptiFill.](graph.png)
Summary

Heat transfer and fluid flow models for Original and Wagstaff® OptiFill™ metal distribution systems for billet casting have been developed to investigate metal flow and heat losses. Optifill™ has the following benefits:

• **Less fill start time difference in OptiFill™** (more metal to cold end early)
 OptiFill™ → ~4.6 sec, Original → ~17.4 sec

• **Less fill complete time difference in OptiFill™** (more metal to cold end)
 OptiFill™ → 11.2 sec, Original → 22.6 sec

• **Less total fill time in OptiFill™** (smaller runner trough + ingate + melt pool)
 OptiFill™ → ~21.1 sec, Original → ~26.3 sec

• **Less heat loss in OptiFill™** (faster metal flow in the runner trough)
 OptiFill™ → ΔT is ~15 °C less at start of cast and 3-5 °C less in run state
Rahab Original System to OptiFill™

Old System: 7” x 44 strands Original
Rehabbed System: 7” x 44 strands OptiFill™

Benefits:

- ~12 sec less total fill time (OptiFill™ = ~15.0 sec, Original = ~28.0 sec)
- ~10-15 °C less heat loss (OptiFill™ = ~10 °C, Original = ~20-25 °C)
- Consistent start-up process

Wagstaff® OptiFill™ metal distribution system is the preferable choice in production of premium quality billets
Acknowledgement

The authors are very grateful to Wagstaff billet refractory research team members for their support and discussions.