
 

 

  
Abstract— For flow conduits with mild slope and considerably 

large vertical curvatures the hydrostatic distribution of the pressure 
may be used for design proposes. However, for the spillway chutes 
actual pressure load over the steep slope beds with small vertical 
curvatures may differ from the hydrostatic pressure values. The 
differences in pressure load on curved bed chutes are mainly because 
of the centrifugal forces.  In present work, the results of a version of 
the NASIR 2D Finite Volume flow solver which solves depth 
average flow equations on variable steep slope bed, are compared 
with the results of the Flow3D Finite Volume solver, which utilizes 
the VOF technique for solution of water free surface location as well 
as a set of laboratory measurements for test cases reported in the 
literature. The main goal of present work is to investigate the division 
of the numerically computed flow parameters (such as water surface 
elevation and bottom pressure) by 2D and 3D computational models 
from the hydrostatic assumptions 
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bed chutes.  

I. INTRODUCTION 

apidly varied transitions in open channels typically 
involve flows with high curvatures and or slop. The 
length of such transition is usually short and pressure 

distribution significantly non-hydrostatics and velocity 
distributions are highly non-uniform. 
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At present most computational modeling of open channel 
flows are based on the depth-averaged St. Venant equations, 
in these equations, a uniform longitudinal velocity and 
hydrostatic pressure distribution are assumed. Correction 
coefficients may be applied for different distributions if they 
can be established a priori (Yen 1973). These equations are 
applicable for very shallow flows, with wavelength-to-depth 
ratios in excess of about 20 (Henderson 1966). For moderately 
shallow flows (i.e., for shorter feature wavelengths), the 
Boussinesq equation are the next level of approximation 
(Chaudhry 1993). While the Boussinesq equation are 
applicable to somewhat shorter lengths (about six depths), 
they do not appear to have been successfully applied to 
problems whit steep slopes   (Montes 1994). 
Dressler (1978) attempt to extend the one dimensional 
approach to higher- curvature flows by using a curvilinear, 
orthogonal coordinate system based on the bed geometry. This 
approach, applied by Sivakumaran et al. (1983), is based on a 
potential-flow assumption. The method, however dose not 
account for the water-surface curvature being different from 
the bed curvature being different from the bed curvature and 
reduces to the St. Venant equation for a flat bed. 
Hager and Hutter (1984) presented the method, based on 
potential flow in a streamline coordinate system, which 
assumes a linear variation of flow angle and curvature 
between the bed and surface. The result was shown to be an 
improvement over the Boussinesq equation but limited to 
geometrically mild slopes (up to about 60°). A similar but 
higher-order method was developed by Matthew (1991) in 
Cartesian coordinate system. This method involves an 
iterative solution. Corrections for the effect of friction were 
also incorporated. 
A further alternative was presented by Steffler and Jin (1993). 
There, the plane Reynolds equation were vertically averaged, 
and moment equations were developed by vertically 
integrating the Reynolds equations after they had been 
multiplied by vertical coordinate, The three extra equations 
allow specification of three further flow parameters. Linear 
longitudinal velocities as well as quadratic-pressure and 
vertical-velocity distributions were assumed, and equations 
were rewritten in terms of parameters of these distributions. 
Essentially, the approach amounts to a low-order weighted 
residual method. The method suffers from the crudeness and 
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arbitrariness of the assumed distributions, and results in some 
long and complex equations where the terms are not of 
uniform order. It does have the advantage of incorporating the 
effect of turbulent stresses directly, although these are not 
important in the applications considered in this paper.  
In this paper, a module of FLOW-3D®, and a depth average 
version of NASIR flow solver are applied to model the free 
surface flow over the two small scale test cases. First, flow 
from horizontal to a steep slope whit a circular arc transition is 
modeled. Second, flow over a symmetric and an asymmetric 
bed profile is tested. 
Note that, the utilized FLOW-3D® applies the True-VOF 
(volume-of-fluid) technique for treatment of the free surface, 
and hence, does not incorporate any hydrostatic pressure 
distribution assumption (i.e. “streamline curvature” explicit 
consideration) but the utilized version of NASIR flow solver 
which solves depth average flow equations on variable steep 
slope bed uses hydrostatics pressure distribution assumption 
[18]. 
HIS document is a template for Word (doc) versions. If you 
are reading a paper version of this document, so you can use it 
to prepare your manuscript.  

  

II. GOVERNING EQUATION 

A. 3D Flow and VOF Equations 
The general mass continuity equation that uses in        FLOW-
3D®  is: 
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Where fV  is the fractional volume open to flow, ρ is the 

fluid density. The velocity components (u,w) are in the 
coordinate directions (x,z). Ay and Az are similar area fractions 
for flow in the y and z directions, respectively. 
The equation of motion for the fluid velocity components in 
the two directions are the Navier – Stokes equations (in 
FLOW-3D®) as follows: 
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In these equations zx GG ,  are body accelerations, and 

zx ff ,  are viscous accelerations that for a variable dynamic 

viscosity μ  are as follows: 
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Fluid configuration is defined in terms of a volume of fluid 
(VOF) function, F(x, z, and t). This function represents the 
volume of fluid per unit volume and satisfies the equation. 
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The interpretation of F depends on the type of problem being 
solved. For a single fluid, F represents the volume fraction 
occupied by the fluid. Thus fluid exists where F=1 and void 
regions correspond to locations where F=0. Voids are regions 
without fluid mass that have a uniform pressure assigned to 
them. Physically they represent regions filled with a vapor or 
gas whose density is insignificant with respect to fluid 
density. 
  

B. 2D Depth Average Equations on Sloping Bed 
The water phase mathematical equations are shallow water 
equations modified for a coordinate system with an axis 
normal and two axes(x' and y) parallel to the bed surface ( in 
NASIR flow solver). 
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In these equations x' is the axis tangential to the chute slope 
and y is the same as the y axis in the global coordinate system; 
u' and v are the velocity components in x' and y directions, 
respectively; h' is the flow depth perpendicular to the chute 
bed surface and g is gravity acceleration; α is the chute angle; 
Sfx’ and Sfy are the bed surface friction slopes in x' and y 
directions, respectively and n is Manning’s friction coefficient 
[18]. 
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III. NUMERICAL SOLVERS 

A. 3D Flow Solver with VOF Technique 
FLOW-3D® numerically solves the equations described in the 
previous sections using finite-difference (or finite-volume) 
approximations. The flow region is subdivided into a mesh of 
fixed rectangular cells. With each cell there are associated 
local average values of all dependent variables. All variables 
are located at the centers of the cells except for velocities, 
which are located at cell faces (staggered grid arrangement). 
[1] 
 Curved obstacles, wall boundaries, or other geometric 
features are embedded in the mesh by defining the fractional 
face areas and fractional volumes of the cells that are open to 
flow (the FAVORTM  method ).[1] 
Pressures and velocities are coupled implicitly by using time-
advanced pressures in the momentum equations and time-
advanced velocities in the mass (continuity) equation. This 
semi-implicit formulation of the finite-difference equations 
allows for the efficient solution of low speed and 
incompressible flow problems. The semi-implicit formulation, 
however, results in coupled sets of equations that must be 
solved by an iterative technique. In   FLOW-3D® two such 
techniques are provided. The simplest is a successive over-
relaxation (SOR) method. In some instances, where a more 
implicit solution method is required, a special alternating-
direction, line-implicit method (SADI) is available. The SADI 
technique can be used in one, two, or in all three directions 
depending on the characteristics of the problem to be solved. 
The basic numerical method used in FLOW-3D® has a formal 
accuracy that is first order with respect to time and space 
increments. Special precautions have been taken to maintain 
this degree of accuracy even when the finite-difference mesh 
is non-uniform. 
A new VOF advection method based on a 3-D reconstruction 
of the fluid interface has been developed and implemented in 
FLOW-3D® Version 8.2. The Volume-of-Fluid (VOF) 
function is moved in one step, without resorting to an operator 
splitting technique, which gives the present method increased 
accuracy when the flow is not aligned with a coordinate 
direction.  
The existing VOF advection method in FLOW-3D® is based 
on the donor-acceptor approach first introduced by Hirt and 
Nichols.  
 

B. 2D Depth Average Flow Solver 
NASIR solver uses the shallow water equations. In the 
numerical model (1&2), the shallow water equations have 
been modified for a coordinate system with an axis normal 
and two axes(x' and y) parallel to the bed surface. The depth 
and velocity values are depth-averaged values computed on a 
triangular unstructured mesh using the finite volume method. 
The equations have been converted to discrete form using the 
overlapping cell vertex and cell centre method. The 
experimental relations have been added to the model to 
compute the inception point distance from the crest, the flow 
depth in this section and the depth-averaged air concentration 

in each joint. Then the velocity and air concentration 
distributions in flow depth have been obtained using 
experimental relations. Can write the formed vector in before 
stage the shallow water equations: 
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Application of the Green’ theorem in equation (13) and the 
integrated equation form is: 
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Where Ω is the area of the control volume, Q 1 + n is the value 
of Q to be computed after Δt and N depend of the finite 
volume method (overlapping cell vertex and cell centre 
method). 
 

IV. COMPARISON OF THE NUMERICAL EXPERIMENTS 

For the present numerical investigation, the experimental 
measurements reported by Montes (1994) are used. The 
experimental data for water-surface and bed pressure profiles 
obtained from the plots provided by Montes (1994). These 
experiments were performed in a smooth channel 0.402 m 
wide. The steep slope 45° was studied. For this slop transition 
from horizontal to steep slop was obtained through a circular 
arc of 0.1-m radius. 
The model boundary condition for this case, with critical flow 
occurring at upstream boundary, are  specified upstream depth 
(h0) and vanishing derivatives of extra pressure and velocity 
variables. As downstream flow is supercritical, no conditions 
are applied at downstream end. For this case the bed shear 
stress term in neglected. 
Figs. 1 and 3 show the compute velocity magnitude and 
pressure counture and Figs. 2 and 4 show the compute and 
measured water-surface and bed-pressure profiles for different 
discharges. The model predicted both the water-surface and 
bed-pressure extremely well. The agreement appears to 
improve with increasing discharge. 
The hydrostatic bed-pressure also shows in Fig. 3. The 
computed pressure distribution presents little differences with 
hydrostatic pressure distribution except for transition sections. 
These differences are due to curved bed in transition and 
efficiency of centrifugal acceleration. 
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Fig. 3 Computed pressure contours (Pa) for transition 45° slop in    

Flow-3D:  (a) Q=0.02 m3/s; (b) Q=0.04 m3/s. 
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Fig. 2 Water-Surface profile for transition 45° slop: 

 (a) Q=0.02 m3/s; (b) Q=0.04 m3/s. 

 

 

 
Fig. 1 Computed velocity magnitude contours (m/s) for 45° slop in 

 Flow-3D:  (a) Q=0.02 m3/s; (b) Q=0.04 m3/s. 
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Fig. 4 Bed-Pressure for transition 45° slop: 

 (a) Q=0.02 m3/s; (b) Q=0.04 m3/s. 
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Fig. 8 Bed-Pressure for symmetric bed form: 

 (a) q=359.9 cm2/s, (b) q=1,119.7c m2/s. 

 
Fig. 7 Computed pressure contours (Pa) for symmetric bed in       

   flow-3D: (a) q=359.9 cm2/s, (b) q=1,119.7 cm2/s. 

 
Fig. 5 Computed velocity magnitude (m/s) for symmetric bed in  

    flow-3D: (a) q=359.9 cm2/s, (b) q=1,119.7 cm2/s. 

 

 
Fig. 6 Water-Surface profile for symmetric bed form: 

 (a) q=359.9 cm2/s, (b) q=1,119.7c m2/s. 
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The experimental measurements reported by Sivakumaran et 
al. (1983) are used for the present numerical investigation. 
These experiments were performed in a horizontal flume 915 
cm long, 65 cm high and 30 cm wide. Two symmetric and 
asymmetric bed profiles, as shown in Figs. 5 and 9 were 
tested. The leading edge of profile in each case was placed 
366 cm downstream from the inlet box, i.e., head tank. The 
upstream undisturbed depth was measured at 16 cm from 
leading edge of profile. The symmetric profile was shaped 
according to a normal distribution, and was 20 cm high and 
120 cm long. The asymmetric profile, with a 150-cm length, 
was achieved by passing a B-spline through a fixed set of 
coordinates. Further details of experimental system and bed  
The upstream undisturbed depth was measured at 16 cm from 
leading edge of profile. The symmetric profile was shaped 
according to a normal distribution, and was 20 cm high and 
120 cm long. The asymmetric profile, with a 150-cm length, 
was achieved by passing a B-spline through a fixed set of The 
upstream undisturbed depth was measured at 16 cm from 
leading edge of profile. The symmetric profile was shaped 
according to a normal distribution, and was 20 cm high and 
120 cm long. The asymmetric profile, with a 150-cm length, 
was achieved by passing a B-spline through a fixed set of 
profile can be found in Sivakumaran and et al. (1983). 
The results of FLOW-3D®  and NASIR flow solver along 
with experimental data for the symmetric are shown in Figs. 6 
and 8. For the low flow, the predicted water-surface elevation  
for compare well with the measured data in the sub-critical 
region, while in the supercritical region the measured data 
show some scatter that is due to local turbulence resulting 
matches well with the measured data in the supercritical 
matches well with the measured data in the supercritical 
region, while the results in sub-critical regions follow the 
hydrostatic pressure distributions. The result of bed pressures 
from bed curvature, as discussed by Sivakumaran et al. 
(1983). The pressure deviated from hydrostatic pressure 
distribution in the high curvature zone and this gap increases 
for high flow rate. For the high flow rate, the predicted water-
surface elevation matches well with the measured data in the 
supercritical region. For the supercritical region, the model 
predicts a lower water surface elevation and bed pressure, 
while oscillations are predicted for both surface elevation and 
bed pressure just upstream from the crest. 
The results of water-surface elevation for cell center model in 
NASIR flow solver matches better than cell vertex model. 
The results for the asymmetric shape are shown in Figs. 9-12. 
For the asymmetric shape, Figs. 11 and 12 show the compute 
and measured water-surface and bed-pressure profiles for 
various discharges.  The predicted depth and pressure in 
region of steep slope matches well with measured data if the 
bed and water surface curvatures are considerably large. 
However, for higher flow rate the numerical results present 
better agreements with experimental measurements in the 
steep slope regions.    
In this case the predicted water-surface elevation for cell 
center model in NASIR flow solver is more accurate than cell 
vertex model. 

 

 
 
 
 

 
Fig. 10 Computed pressure contour (Pa) for asymmetric bed form in 

flow-3D: (a) q=375.0 cm2/s, (b) q=1,116.5 cm2/s. 

 
Fig. 9 Computed velocity magnitude (m/s) for asymmetric bed form in 

flow-3D: (a) q=375.0 cm2/s, (b) q=1,116.5 cm2/s. 
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V. CONCLUSION 

The results of present numerical investigations show that the 
water-surface elevation computed by both FLOW-3D®  
(which uses True-VOF technique for computation of water 
free surface) and a 2D depth average version of NASIR flow 
solver (which is developed for variable steep slope bed) match 
well with the measured data.  
The computed pressures by the utilized 3D flow solver are in 
good agreements with the experimental measurements. 
However, the computed the pressures at the bottom surface of 
chutes with vertical curvatures slightly differ from the 
measured pressure in some parts of the super-critical flow 
parts. The computed pressures along the conduit differ from 
the hydrostatic assumption due to curved bed and effect of 
centrifugal acceleration. The differences are more pronounce 
at the zones with considerably large vertical curvatures, 
particularly for high flow rates. Therefore, it can be stated 
that, in the regions with large bottom curvature the pressure 
distribution does not follow the hydrostatic pressure profile. 
For the convex bottom curvature the hydrostatic assumption 
for pressure is more than the actual pressure, while in concave 
curvature the contrary condition is observed. 
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Fig. 12 Bed-Pressure for asymmetric bed form:  

(a) q=375.0 cm2/s, (b) q=1,116.5 cm2/s. 
 

 

 
Fig. 11 Water-Surface profile for asymmetric bed form:  

(a) q=375.0 cm2/s, (b) q=1,116.5 cm2/s. 
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