A POROSITY TECHNIQUE FOR THE DEPFINITION
a

ORSTACLES IN RICIANCULAR CELL MESHES

C. W. Hirt and J.

M. %ieilian

Plow Beienca, Inc.
Log Alamom, New Mexico
Auguaet 1985

Abstract

Boundary fitted coordinates or
edaptive mesh schemss have obvious
advantages for the numericnl solution
of ship hydredynamics problems. They
aleo introduce & variety of numerical
difficulties. For example, special
generators muat ve devised to
construct suitable meshes that fit the
desired boundaries while maintaining
egnvex cells with ressonable aapect
ratios. Sometimes numerical stanility
requirenents lmpose unacceptable time-
3t2p limits because of a few meah
cells Wwith exceptionally small sirzes.
Humerical algorithms based on these
methods also tend to be more
complicated because of the added
conplexity azsociated with the
changing shapes and orientations of
the mesh cells.

In this paper we des¢ribe an
alternative technigue for computing
flows bounded by complicated geometric
#hapes. Grid distortion problams
are eliminated by using a grid
composed of rectangular cells.
Geometric boundarias are defined
within this grid using o porooity
tecanique in which the porosity has a
gero valuye within obstacles and a unit
value elaewnere,

Certain conaistency requirements
are presented that gulde the porosity
formulation into a numerieal sglution
algorithm that haa good stability
proyerties. The resulting formulation

can be used with the full Navier-
3tokes equationa or for potential flow
applicationa, 1In either case, fraee
surfaces of arbitrary deformation Ay
be included using the Volume-of-Fluid
(YOF) technigue.

I. Introduction -

4 yreblem frequently confronting
numerical analysts is how %o represent
eomplex geometric boundaries. TFor
inatance, in many fluid flow problema
the flow region ia hounded by curved
walls, or variously-shaped obatacles
may be embeddsd within the flow. 1In
such cases the modeler is often driven
to complicated finite-element methods
orF to simplified approximations, such
a3 replacing curvea by stair-step
surfaces,

Although finite-element methods
have achleved conesiderable muccess in
many applications, their geometric
flexibility is achiaved at the sxpenae
of nore complicated nemerjigal
glgorithma. Turthermore, these
methods may e subject to numerical
acocuracy and stability problsms when
the shapes and sizes of the elementa
vary rapldly frem one element to the
next.

Low order finite—element and
Tinite-difference methods based on
meahes of rectangular cells are
logicelly =impler, emzier to program,
and easier to analyze faor their
atability and acouracy properties.



It iz natural, therelore, to sced Wways
to model curved Doundaries in these
gachenes.

4 nuzher of neteworthy attempts
have teen made to oodel curved
boundaries in codes designed for
incotprasgible fluid flow analysis.
¥ieceili [1] used a marker particle
technique to represent arbitrary
boundaries in a Marker-and-Cell type
code, His secheme, which invelved a
pressure adjustment te prevent flow
croseing a boundary, was quite
successful for & variety of free
surface flow calculationa [2]. Hirg,
et al [3] and McMaster and Gong [ 4]
nave uged a somewhat simpler scheme in
which selected velocifties are adjuated
in cells to satisfy a zero normal
velocity boundary condition. ‘When
free surfaces are present, however,
this method can lead to an over
gpecificatiaon of the boundary
sonditions. This method also
introduces some difficulties with
regard to Tictitious fluxes of dass
and momentum across boundaries unleas
precautions are taken to specify
values fur flow variables outside the
boundary.

Another possibilisy for medeling
curved boundaries in rectangular grids
1z through the use of a variable
poerosity formulation. Thia concept is
the subject of the present paper.

Trus porous media flow models have
existed for a long time. Usually a
porous flow iz dominated by v¥isecous
atreeses ariging from numerous tiny
flow paths with a lerge surface-to-
volume ratio. More recently the
concept of a variasble poroaity has
been usad as & means of repreaenting
flow tegions containing distribvuted
cbstructions that are too small to be
resolved by the c¢ella in a discrete
grid. Tor example, codes used to
model coolant flow in nuclear reactor
cores [5,6,7] have employed this
concept as a means of rapresenting the
fractional flow volumes and areas
surrounding bundies of fuel rods and
other structures.

The idea we wish “o explore here
iz the use of a porosity that changes
abruptly froo unity to zero across &
rigid boundary. The ugual fluid
dynamic cguations are to hold in the
reglon where the porosity is unity.
Regicns with sero porosity, that is,
with zero flow voluze are obstacle
regions. Although this is a simple
idea, it dees not appear %g have been
vreviously explored az a general
procedure.

In the next section we desszcribe
the porosity concept in more detail
and derive the modificationa needed in
the fluid dynamic eguations 4o include
variable porosity effscts. For
aipplicity, this discussion will be
linited to two-dimensional, inviacid
and incompressalible flew, but the baszic
ideas can easily be extended %o
comprez2ibls, viscous znd three-
dimensicnal situations. In fact, scoe
three-dimensional examnlan will be
used as 1lluatratiers. The primary
contribution of thisg paper is
contained in Sectian III, which
describes the special consideraticns
negded to numerically approximate
equations conteining a discontinucus
poreaity. The numerical
representation of a variable porosity
{38 most conveniently defined in terms -
of fractionel areas and volumes open
to flow. Thus, the method descridved
in thie paper is referred to as the
Practional Area/¥olume Obstacle
Representation {FAVOR) Method,
8ection I¥Y contains a discussion of
auch metters a3 pumerical stabilityr,
accuracy and the relationship of the
FPAYOR method with other methods for
representing ohstacle boundariea. The
queation of accuracy will require a
digression into the accuracy of
nonunifore rectangular grids in
general, This i3 done ip Bection
IV.A, where it will be shown that
approximations of conservation laws
must loge some formal accuracy in
variable grids. Examples illustrating
the use of thie new technique are
presented in Section V.



il. Forculation of Bguations

Equationa describing fluid flow
in 2 region containing multiple
obstacles can be conveniently derived
using the oathematical concept of
gencralized funckions, This will be
cutlined in the next segtion. Then a
brief discussion will e given of the
mezhods used to reduce these squations
T0 approximations on discrete arids.
As might be expected, there are
several steps in this reduction where,
depending on the assumptions made,
different approximating equations may
be produced. Some attention will be
given to the most important of these
steps and Justifications will be
Presented for the selections made.

A. Porous-Medis Equations

To derive the equationa for
porous media we make use gf the theery
of generalized functions [8]. With
this appreach, boundary conditions at
fluid-gbstacle interfaces are
antomatically isolated in a coavenient
way. Let us consider by way of
illustration the density eguation,

3p/3t + Vpu = 0 {1}

where p is the density and u is the
fiuid velocity. The denzity eguation
holda at all points cccupied by flnid.
A generalized (deaviside) function of
*he spatial coordinate vector x and
denoted by Hix) 1s defined such that

1.0, 1f x is in the fluid
H(x) = { (2)

0.0, if x is in an obatacle.

If we now multinly the density
egquation by the atep function H, the
resulting equation can be gonziderad
as defined at all points in apace. It
agrees with the original egquation,

Eq. {1), in the fluid and is
identically zeru at pointa lnocated in
obstacles. The density function can

be anulytically continued into the
cbstacles in any manner for, as we
shall see, i{ts value in theze reglons
will not be ilmportant.

The next step is to move the H
function inside <he time and spatial
derivatives. To carry out the
tranzposition, we shall need %o
avaluate derivatives of the step
function H Portunately, it is known
that the gradient of a step function
is another generalized function - +the
delta function,

VH(x) = -2Hn&{x-xg) {3)

where x. 1s any point on the interface
{aurfacgs between the fluid and an
chetacle. The vector n is a unit
normal te the interface at location x
and is directed out of the fluid. 4
formal derivation of Zq. (3] can be
made using the teachnigues in Her. [8],
but we can see that it is intuitively
correct fram the following argument.
Derivatives of H away from an
interface nare zero decause H is then a
constant function. PFor the sape
reason, a derivative of H parasllel to
an interface must alsc be zero.
Gradientz normal to an interface are
infinite when evaluated at the
interface because thers H undergpes a
gtep change. On the other hand,
integration of a normal derivative of
H acrogs an interface gives a result
of unlty according to ite definition.
Theae properties are just those of a
delta functlon, and this suggests the
form of Eq. {3}, The factor of 2H on
the right side of the equation ia
introduced for convenience, but since
H iz digcontinuous where the delta
functien is nonzero, B prescription is
needed for evaluating the integral of
such a product. The role is

+1
fﬂﬂz]ﬁ(ﬂdz = {(Q, + Q_}/2 (4)
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woere subgeripts refer to valucs of O
gr @ither side of z=0. Usirg this
rule It is easy %0 520 that she factor
of 2E in Eq. (3) ias consistent because
an integration of that equation acroas
X5 doas produce an identity.

If the fluid-obatacle interfaces
are time dependent, then we will also
need the tine derivative of H. This
time dependency can only arise from a
shiftirg of the boundary points with
time. The time rate of change of
boundary point x. is just the velocity
of the boundary v., i.e.,

{dxg/dt) = Yy (5)

Therefore, using the chain rule for
differentiation the necessary time
derivative is,

3/t = -{dxgfdt)?.H

2HY gon gl x-xg) (6)

How, using Eg. {2) and Eg. {6} the
density equation multiplied by H can
be rewritten as

(FpH/9t) + ¥+ (pHu)

+ 2pH{u-v ) nélx-x,) = 0 (7)

The last term Involving the delta
Tunction is identically zere. 1To gee
this, first note that it is zsro
everywhere except at a fluid-obstacle
boundary. At such a boundary it only
hae meaning when it i3 integrated
across the boundary, but the integral
is proportional to (u-v.):-n which is
zero because the fluwid velooity normal
t¢ an obstacle boundary muest equal the
narmal veleocity of the boundary.

A similar derivation can be used
te derive the corresponding inviscid
mosentud equations in a porous mediuwm,
g0 that the Tinal equations have the

form

(opBlat) + ¥:{pi) = O (Ba)

{3pHw/at) + v-(pHwu) = -Hyp + Hye

(3}

where p is the fluid pressure and g is
a body aeceleration (e.g., gravity).

This is a special form af the
perous~media equationz in which the
porosity Is a discontinuous function.
That is, the porosity is either 0.0 or
1.0. To apply this result to a
materisl like sand where the posltionsa
of individual sand grains are unknown,
1t 1= Tivst necessary to perform an
ansemnble average on Egs. (). Only H
varies in the ensemble average bscausze
it depends implicitly on the
arrangenent of the obetacles (i.e.,
the sand grains). Therefors, after
averaging we replace H in Eqz. (B)
with its ensemble averege, say T. The
quantity f{x) is the average porosity
{or it may be equivalently interpreted
a3 the probabllity that an obstacle
does not exist at locatien x). PFor
our purposes we wish to keep Eqs. (8)
83 they are 20 that we may use H to
describe well-defined arrays of
obatacles.

B. Coarse-S8cale Apnroximations

Let us integrate the denaity
aquaticn over a small volume in spece,
R, wilth boundary surface 5. Within R
there will, in general, be aubregions
containing fluid and subregions
containing obstacles. The interfaces
between theae regiona within R will he
denoted by I. The average of the
density equatian over region R ia

ﬁ-j (%E—H + VrpHuldR = 0 (9)
R

where R i3 here used for hoth the
volume of the region &nd as an
indicator for the limits af



integration. 35Since R is independent
9T time, the leading ierm in Eq. {9)

ig
1 2 o1
ﬁ]}; H{QHJGH = _atfn‘/;l AHAR )} (10}

In weking Ffinite-volume
approximations for numerical solution
algorithms, the region R would bhe one
clement or cell of a grid that divides
the flow region into a set of control
volumasa. FoT a useful approximation,
the grid cells must be chosen small
ehough 50 that within a cell the
dependent variables describing the
flow can be treated as constants (or
pessibly as having some simple spatial
variation}). Neglecting flow
variations over scales covered by
reglion E compared to variations over
the entire region of interest is
called the coarse—scale approximation.
When thia asaunmption {5 satisfied, the
density in %he velume integration in
Eq. {10) can be replaced by ita mean
value 80 that

]}f pHAR = pV (113
R

where

v:ﬂ-ﬁi HdR (i2)

The quantity ¥V ia defined, for
arbitrary R, asz the fractional volume
apsn to flow.

A gimilar result c¢an be obiained
for vhe divergence term in Eg. (9).
FPirst, Gauss' divergencs theoreas is
used to reduce the volume integration
To a surfoce integral.

-;-f ¥+ pHudR ﬁ’] pusnHds (13}
R 5

The integral is the flux of fluid out
of region B through the open portion
of its bpundary 8. Usually the

boundary 1s subdivicged inzo a act of
fFegmelis U such ihat the ccarse-scale
approximation can he applised to each
segment. TFor cxample, for segment i,

1 . _ . ’
g'f punHdS. = ou-n A 143
1 31

where

.
fl.:g_-/ Hd3, {15)
lSi

The quantity A is defined, for
arbltrary 8i{, as the frzctional area
opgn for flaw across surface gy

If the functions ¥V and A are
continuous and diffsrentiable, ic can
he skown that they must be egual to
the same function. Hawever, our goal
is the derivation of finite-volume
equations in wnich these gquantities
may he dizcontinucus functions. Thus,
we Sae that zeveral fractional volumes
and areas must be associated with each
control volume.

C. Tressure Gradient Averages

Consider the volume averaging
process applied to the pressure
gradient term appearing in Eg. (8b),

Hl[ HYDAR (18]
B

An alternative form is

%[ {¥{pH} « p¥HIdR
®

" R

= % pHgdS-L% pndl
3 I

where the last integral has been
reduced using Eg. (4) and I indicates

= lf (P(pH) + 2Hpns (x-x,)}ar  (17)
R



integration over all fluid-abustacle
interfaces located within B. This
glgernative form is easy %o interpret:
the firat inzegral is the pressure
force acting on the fluid alang the
open portion of the surface § that
surrounds R, the second integral is
whe pressurc force acting on +he fluid
at all interiecr fluid-obstacle
interfaces.

The guestion is, which of these
forms, Eg. (i6) or Bg. (17}, is be=t
aulzged for finite-volume
approximations? When the pressure is
nearly constant witain R, both
expresgsicong are approximately zero and
fieither pne is preferable over the
other. However, when there is a
hydrostatic equilibrium, the pressure
gradient ia constant and the
expresaion in Zg. {18) reduces
inmediately to VW,

When there 1z a hydrestatic
equilibrium, the secand term on the
right side of Eq. (17) is equal to the
net buoyant force experienced by the
cbstacles within R and cannot be
ignored. In any casa, neither term on
the right side of Eq. {(17) can ve
sagily approximated in this limit.
Some anthors have used the coarse-
scale approxization 9{p¥) Ffor the
first term, but gince the second ternm
cannat ve ignored, this is net a
useful or convenient approximation.
Thus, for a corrse-scale approximation
it iz best vo gssume the pressure
gradient rather than the pressure is
nearly oonstant.

In dynamic situatilons, when the
pressure differs from hydrostatic, the
appraximation, V9p, ie net exact for
i% neglects non-viscous drag effects
imposed on the fluid by the obastacles.
If these drag foreces are zignificant,
it is necessary to add thew separstely
%0 the approximation. When doing
this, however, it must be remembered
that buoyant forces on chbstacles are
not £o he included in the addition.

II7. Finite-Yoluwe Fquations

A mesh of nonunifarm rectangular
ceclls will be used as the basis Tor
our finite-volume equations. Using a
roruniform wesh helps us identify some
points regarding accuracy and also
allows a comparison of the FAVOR
method with more standard technigues.
Some simplifications are in order,
however, to xeep the presentation
wanageable. Thus, the following
development will bBe limi<ed 4o the
case of two-dinensional,
incompressible fiuid Flow with
constant density. The density
eglation, Eg, (8a), with the density
divided cut is referred to as the
continuity eguation. After dividing
the momentum eguations by o the ratio
of pressure to constant density will
again be denoted by p. Extensions o
three-dimegnsional flows or to flaws
Wwith variable density is
atraightforward.

Dependent wvariables are to be
placed at staggered grid locations as
illustrated in Fig. 14. The staggered
grid dates back to the Marker—and-Cell
(MAC) method [9) and is particularly
well suited for aprroximations based
on the primitive variables, preasure
and velocity.

4 gimplified subscript notation,
Fig. 1B, will be used to indicate mesh
lecationa relative %o & generic cell
center at (i,3). ZIocation {i,j) will
be denovted by the subseript C. 1In
general, upper case lettera W, 3, F,
and ¥ denote shifts in the principal
compass directionz by one integer.
For ingtance, E refers to leocation
(i+1,i), while ¥ refers to locmtion
(1,3+1). Similarly, the lower case
lettera n, 3, &, and w will dencte
corresponding ehifts of half integer
values. Multiple integer shifta are
repredented by repeated letters. The
order of the lettera iz unimportant.
Some examples should make it clear how
this convenlient notation works.



41,4 = g
Yigr /2,53 = Y
Wigt /2, j+1 /2 = Vpe

V1372, 542 T MNww

iy = &KC

Using finite-volume and time
average®, the denaity and momentun
eguations can be reduced to discrete
(difference} equations. This formal
reduction, howvever, involves & variety
of integrated quantities at different
mesh locatiens. These gquantities must
be treated as independent unlezs limit
Properties or consistency arguments
carn be found vo eliminate them as
unknowns. For instance, we will find
that consistency requires certain
quantities st one mesnh location to be
simple combtinatiaons of simflar
quantitiea at neighboring locations.

We begin by averaging the
continuity equation over a generic
mesh cell (i,j} and over the time
interval from t to t+&+,

U‘rn+1 “y0yar + ((Hu}e—CH'll}w];"‘sxc
{18)
+ (<Hv>n—(HV?E)fGFc =0

where V is the volume integral dsfined
in Bg. (12) and angled brackets
indicate the time and surface averages
defined as

1 1
<@ = dtsj; Qas . (19}

Gtrictly speaking, there are two
different angled-bracket avermges
appearing in Bg. {18): +those
containing a u-velocity are integrated
With respect to the y-direction, while
thogse contalning v-velocities are
integrated with respect to the x-
directiecn. 7This willl not cauas

confualon since we are considering
each guantity with a different
argument or at a different location as
an independent guantity.

IThe momentum eguation for the u-
velocity located at mesh position e iz
to be averaged in zpace over g
rectangle that extends from location ¢
to location E, see Fig. 2.

Integrating over this region and ever
time interval &t we have

(Fam* - W) /54

+ (<Huu>E - <Huu>c]/6xe

{20)
+ (KHvuy g, - <Bvudg,)/syg

= ~Velpg-ppl/exg + Vyug,

where Quasa' theorem has besn used o
reduce the divergence term to surface
integrals, and where

6xg = (8xp + 6xy)/2. The overbvar
tndicates a volume average similar to
that in Eg. {12}, PFor the pressure
terma, we have uszed the coarse-scalea
approximation deserihbed earlier, in
which the pressure gradients are
rouvghly constant in tine.

The averaged equatlons, Egs., (18)
and {20}, involve many undefined
quantitiss. To proceed further we
must either introduce ad hoo
appreXimations or seek scme additional
squeticons that will reduce the number
of unknowne. One posaibility is to
look for conziatency relationships.
For instence, in the originsl
differential eguations, Egqs. (8), the
density equation can be anbtracted
fron the momentum equation to give an
equation for Just the wvelocity, i.e.,

{au/at) + u-vu = -7p + g {21)

This type of egquation manipulation is
sssential for deriving shock wave jump
conditions in compressibhle flow,
Barnoulli's equation and many octher



zsefun]l ralasionahips., It is
reagonable, therefore, to reguire gur
discretized eguations to5 have the same
property. The goal i to scparate the
dizecretized continuity eguation,

Ez. (18}, from Eg. {20) so that the
resulting equation will bhe g discrete
approximation to Eq. [21), It is
imezediately obvious that this cannot
be dome unless the bar-average of the
product Hu appearing in the time-
derivative term in Eg. (20) is
separable into & product of bar-
averages. Similatly, the sngled-
bracket averagee, which Involve m
product of two velgcities, muat be
zeparable into a »reduct of averages
in whicgn one factor ie of the form
appearing in Eq. {18). Thusz, for
conslstency with the squation
separation procees, we murt firat
require relations of the form

CHuura = CHu>Cug (22)

*
<Hvu>ne = (Hv>neune

the u, in the first relation ig
centered at the cell edge where wa
started The averaging process 2o no
specinl nosaticn i3 used to wark this
quantity. The u* velocities appearing
in the =zecond Twe relations are
Zocated at cell positions other than
The primary, staggered mesh poaltiona
230 these¢ gquantities have the
superscript *. We shall interpret
thease relations =3 definitions for
these new gquantities. That 1is,
relations (22) ars needed for their
farm, but no approximations have been
nade if we consider them as
definitions.

Using these definiticns, the tima

derivative term in Za. (22) can ke
rewritten in the form

L7 ARG () Vst (29)

Again using the definitions, Eg. (22},

and adding ard subtracting inzide the
parentheses, terma esgual te the u,
timez each of the angled bracket
terus, wWe can rearrange 3g. (20 o
n+1 n+l_ . n
?e (ue ue)fﬁt
£ ;
+I(Hu)E(uE—ue)+<Hu>C{ue-ué)]/5xe
+[<Hv>ne{u;e-ue)+(Hv)seﬂuevugel]fﬁyc
n
= —VE[pE—pc)fﬁxe+Vegx - Deug
(247

where D, ia given by the expression,

De = (VO _yT)/ 0 (<Hu> p-<Hurg) /8,
+ {(Hv>ne-<Hv>BE)I5yc
(29)

Bquation {24) ia almoat thea
diacretized version of Eq. {24,
except that it has the extra term
containing D,. However, Dp looks like
the left aide of the discrete
continuity equation, Eq. {18},
evaluated at the c¢ell esdge leocation e
and not at = cell center as ig Eq.
(18). To complete the equation
geparation wa note that D, could be
Tewritten as

D = (SxpDp+dxeDe)/(Sxgrixs) , (26)

where the D's on the rtight side are
now cell-centered expreasions, if we
make the followlng correszpondences

<Hu>p = (<Hu» g +<Eu>, ) /2
WHY» . = [éxc(Hv>n
+5XE(HV> nE) ir |: ﬁxc+6xE:'

Ve = {chvc+5XEVB)I(6xC+ExB} (27;

These relations express the way



quantitiss at intermediate mesh
~ocations are related to similar
guantities at tvheir primary locations.
Jeing them, tha Dy term appeering in
23. (24) is identienlly sero when

3Ig. (18} im eatisfied and we nave
completed The desired squation
sSeparaticn.

If we doasinilar reduction on
the v-momentum equation, then combine
all assucptions and consistency

requirenents, the momentum egquations
can now be written as,

{ut -ul)/ &
L Qr Qo Exnn +fxsqs}fvg+1

= ~(pp-ppl)f éx 42y {28a)

[l oy 2
Cwp vn)fbt

- n+1
+(fye“e+fwaw+nyRN+fyCHC}fvn

= ~lpy-pg )/ Sypre, (28v)
where

dg = ECHHDE(uE-uE)IGxE .

fIE = 533/(6XC+5IE}

Qg = 2<Hwglugwuf)/éxg ,

Pyp = chf{éxc+6xE]

Ip = ZHD o {wpe-ull/ syg .

fxn = i fz
e = 2V geluloul,)/by; {29)
fag = 1/2

*
Re = 2¢HW jgivpa-vpn)/ox;

fro = 1/2

¥ n
w = 2CHUY (v ) Sy

oy = 1/2

*
By = 2<avoylvy-vp) /Sy

Loy = Syy/{Syg+syy)

. *
Rg = 2<Hv»plvp-vel/éy, |

Tye = S¥¢/(Syp+iyy)

On the right side of Eq. (288) we have
dropped the factor Vef?g+1 bzcause we
could just as well have used Vg+1 an
the right side of Bq. (24). A ziwilar
factor has been dropped from

Eq. (28b). Eguation (28a) has the
desired form of Eg. [(23) because thea
Qg and Qp terms defined in Eq. (29}
are approximations feor Hu(aw/dx} while
Uy and Q_ are approximationa of
Hv{3u/3y)}. The f factors are
weighting fmctors dependent onm the
cell sizea. In a uniform grid the f'a
are all equal to one half.

To summarize, relationz (27),
which were used to gaive the
diacretized equations the same
separation proeperty as the
differential equatlons, have reduced
the number of unknoewns in the
discretized eguationa. Unfartunately,
there are still more unknowns than

equations. The remazining unknowns
are,

Mg » ¥y » Bp
% ¥
Ug , Upe 5 <Hudg {350}

# *
Ve s Yoe o <Hv>n

Quahtities Y., Vg, and e are the
primary variablee at the staggered
mesh locations we designated at the
cutset. A1l remaining quentities are
gecondary unknowns that cust still be
apecified.



A Coarsc-scale approximatlion
could be used to separatc out the H-
Tunction Zrewm Lbe two unxnowns in
which 1t appeara,

Clad, = Agug
(31}

RHva s Apw

where Ag and A, are the fractional
areas open to flow at the sides of a
mesh cell aznd twg new velocity
averages have been introdnced. Now
all the secondary unknowns {indicated
By a superscript *) have a similar
form: i.e., they are ali reluted to
surface-time averages of velocities.

Up %o thia point the equations
derived are essentially "exact" in
that we have only mads subetitutians
lnrcerms of new unknowns, but to
preceed further we cust now introduce
appreximations that relate these
unknowns %0 tne primary dependent
variables. Tirst, it should be noted
that no time levels have been asslgned
to the various fluxing velocitiea. If
time level n+1 values are uszed, the
resulting equationg are implicit and
would require a complicated procedure
for their simultaneous solution.

Using only time level n values results
In explicit equations that are easy to
spolve, but it is well known that these
egquations may be numerically unstable
unless the approximations are
carefully chosen [10]. Bafore
deciding on suitable approximations,
it will be worthwhile t¢ firat look
into queations of acecuracy and
stability.

I¥. Other Matters

A. Aceuragy in 8 Honuniform Meash

"he horigontal advection of
momentun in Eq. (28a) ia contained in
the sun fxEQE + fyplo.  Accuracy
refers o how rapidly this finite-
volume expression approaches the
limiting differential for Hu(sufax) at
location & 83 6t and the volume of the
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2ell are reduced to infinitesimal
values., If the differsnce between the
finite-volume and limiting forms iz
propertional to the ¥-th power of It
and M-th power of the cell size, the
aceuracy 1s sald to be N-ih order in
time and M-th crder in apace.

A Lypical approximation is to
identify the u* velocity in Eg. (31)
Wwith the ¢ velocity defined 1In
BEq- {22}, In other words, equate
surface and volume ‘averaged quantitiss
at the same location. If in §g we
then set uj equal to an average of the
neighboring boundary centered
velocities,

uE = (ug+uEE]f2 f32)

this corresponds %o a centered
difference approximation. Qg is then
a second arder (in space)
approximation to Ha{au fax) at
location E. A similer centered
approximation in Qg makes it a gscond
erder approximaticon at location €.
Unfortunately, the comwbination of the
two Q's is only first order accurate
at location e because in a nonuniform
mesh the f-weighting factars de not
have the correct valuea, A correct

-g2cond order approximation at e

requires the interpolated expression
Txelp + f4gQp, while the expression
feglp + f,xlp is second order only at
the midpoint between loceticona £ and
E. Since this point does not
correspend to location e {unleas the
mesh is uniform), Fg. (25a) cannot be
more than first order accurate at
position e.

If a doner cell or upstrean
approximation is used for the u;
velocity, then the zituation is worse.
For instance, if the velocity is
pe8itive, then Qp is zero and f,.qQn
becomes a second order approximation
at location €, but at e the
approximation ig geroth order accurate
berause the first tero ina Taylor
geries expansion about e will have the
extra coefficient 2f . In a mesh



with slowly varying cell siges 2f.p
can be significantly different from
unity. Por example, a 20% change in
neighboring cell aizes produces a 10%
errar in the coefficient.

How consider the verticsal
advection terms in Eg. (28a).
Regardless of whether a centered or
donoer cell assumption ia waed for the
u* velgoities, the Q, and Qg terms are
zeroth order acourate approximations
for Hv(3u/ay}, because only §¥g
appears in these expresaions. That
is, firat or higher order derivative
approximations raquire the appearance
of éyy and S¥g values if the meah is
nonuniform. A special cheice for the
Q'a does exist, however, that will
produce a first order appraximation
for these terams.

We conglude, therefore, that
consistent finifte-velume zguations
based on a staggered mesh are formally
first-order acourate in a nonuniform
mesh. A first-eorder approximstion can
be achieved using the donor cell
approximation only if we give up the
rigarous conservation form of the
equations, for example, by modifying
the f-welghting facters. A =zimple
choice for these factors that produces
a firat order approximation isa,

Lyp=fyo=1/2
Len=5yg/ Udygrdyy} Eya=d3c/(8yp+iyg)
Tya=b8xg/ (8xp+8xp) +Lgy=dxp/{6xg+dxy)

foy=f.n=1/2
0 c
v ({33)

If we do not permit approximations
that use valuea aeparated by mora than
on& &x or one 4y, the approximatiocns
cafn never be more than first order
accurate.

E. JZtability Conszideraticona

1% is important to conelder what
numerical stabllity requirements must
be imposed on the FAVOR method. This
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ia partieularly nccensary if the
fractional volume of m cell iz mllowed
to approach zero, which may
cccasionally bappen when a curved
boutidary is embedded in a meah.

A rigorous analytical trestment
of atability ia not pogaible because
the coefficients of the advectieon
terms are not constant. However, we
can make a heuriostic assessment based
on affective- advection apeeds. In the
case of a uniform mesh with unit
areafvolume fractions the usual
stability conditiens for an expliecit
approximation are tha$t fluid must not
move across more than one ¢cell in one
time step. In two dimenalons thia
condition is usually replaced. by the
reatriction thet fluid not move more
than one fourth of the cell width ao
that the maximum pogaible volume
fluxed out of the four sides of the
cell will not exceed the volume of the
cell.

Referring te Ega. (28}, (29}, and
{31} we note that in the PAVOR method
the ndvectlion velocitiez are
multiplied by the ratic oaf a
fractional zide area to a fractional
volume. These modified velocitiea
muat atlll conform with the
requirement that the maximum volume
fluxed cut of a cell not excead the
¢ell volume, Therefore, to gee how
stabillty is influenced by FAVOR we
muat investigate the valuea of ares %o
volume ratios appearing in the finite-
volume eguations. Only two limitiog
cases need to be considered. Por a
ty¥pical u velocity, say U,, Suppode
cell C o its left is almost closed
off (i.e., ¥o is almost zere). This
closure may be due to an cbstacle
gurface oriented either vertically or
horisentally, see PFig. JA. In the
vartical cage A, snd Vg will be unity,
and A, and ¥y will be equal o Ve
Beceuae the fractional volume Ve
appearing in the u-velocity equation
ls a weighted average of Yo and Vg
Eq. {27}, it can be shown that the
maxipun area to volume ratio appearing
Eq. {28e) i3 A, /v, = (6xp
+ 8xgl/éxy, which iz equal to 2.0 in &



Anitora mesh. A factor of two
iecresse in the effective advection
velocities causesa no sericus problems
Tor stubilizy.

The second case %o consider is a
horizontal surface that is tending tao
close off ¢ell € and cell E, see Tig,
3B. I this inatance Ve is tending to
zers (with both Vp oand V) and bhe
worst case is associated with vertical
advection througn the fully open bop
cell faces. It appears that the
verticul flux mn”nfve is tending to
infinity as Y. Teads to zere.

However, v, is simultaneoualy tending
to Zero in this case because the
continuity eguation requirea Apv,dxg
ta be proportional to Aggéya, and the
vertical flux is then proporsional o
Ugdys/éxp. Therefore, the vertical
advective flux is actually bounded and
stability of the momentum equations is
again easily maintained.

These simple considerations show
that the FAVOR methed, as forwulated
in %his paper, should heve no serious
stabiZity problems, even when wmesh
cells are closed off to g tiny
fraction uof their original siza.
expectation has been verified in
ruperous calculations and will be
denonstrated in Section V.

This

C. FRelationship between FAVOR and
Other Qbztacle Methods

When the area and volume
fracticons are all set to unity, The
PAYOR scheme reduces to a standard
type of nonuniform mesh approximation.
Using this observation, we can see how
FAVOR is related %o other obstacle
representations. Suppeose we wiah to
model the presence of a rigig,
vertical wall in a grid of equal-sized
cells, but the wall does not coincide
with a grid line. %©he standard
procecure would be to introduce one
cell of smaller size at the wall
(i.e., & nonuniform mesh) so that the
wall would then lie at a grid line, as
shown in the top sketch of Fig. 4.
Here the small cell has width h and
the wall lies at its lefg boundary.

In the PAVOR scheme we kcep auniform
desh, but define tho wall's presence
by assigning [roctional areas and
volumes to the cell containing the
wall. This ig indizcated in the bottowm
sketch of Pig. 4, where the shaded
area repregents the region of zero
porosity. WNow, to evaluate the two
approaches let us compare the
differcnce equations that would be
used in each case for the U, velocity.
In making thiz comparisen it must be
neted that Ypdx i3 equal <o b, The
reader can easily carry out the
details 50 we asimply ztate that the
two e2quations are identical except for
the pressure gradient termz. In the
TAYOR method the gradient is evaluated
a5 a pressure difference opver a
distanpe 8x, while in the nenuniform
mesh 1t is evalunted as = difference
aver a distence (dx+h)/2. Also, the
spatial Zacationa of Fn and Vy are
different in the twa cases,

A similar comparisen can be made
for the vy veloci<y. In this instance
the two evaluations result in
identical difference equations,
ineluding the pressure gradients.
Purthermorae, the continuity eguation
i3 the same in both crges.

Now we note that the difference
in variable loeations in the two
appreaches isg less than one cell
width, so these approximations differ
by a term that i=s first order in
space. The pressure gradient
difference noted above ig alsg of
first order. Thus, PAVOR agresa to
firat order with a nonuniform mesh
approximation, but since the latter
can enly be first order accurate we
cohclude that the FAVOR method does
net reduce the accuracy of the
approximations.

{ther technigues for embedding
curvad or diagonal boundaries in a
rectangular mesh [1,2,3,4] rely on
first order aspatial interpolaticn ar
extrapolation approximations.
Therefore, PAVOR 1is alsg comparable in
agouracy %o these methods,



D, Bourdary ctonditians

The rormulation of tha FAVOR
nethod would make it appear that no
special consideraticns are needed at
obstacle boundaries. Unfortunately,
thiz i3 true only in she differantial
formulation, but not in the finite-
volume Bpproxinations. A simple
example will fllustrate the problem.
Pigure 54 shows a two-dimensional duct
with parailel walls criented at an
angle to the grid lines of a uniform
mesh., Fractional cell areas and
volusnes are used tao define the duct
walls. Gince the walls are not
aligned with the cell diwgonals, there
ls a wide range of fractional cell
sizes. A uniform flow of
incempressible fluid, direeted from
left to right, was initially defined
in the duct a8 shown in Fig. $3. This
veloclty was held constant at the left
side of the mesh, while at the right
side a’constant pressure condition was
malintained. Under these conditions
tae flgw snould remain constant and
unifarm. In Fig. SC we see thisz is
net the case. A parabolic-like
profile has developed after. the flow
has moved approximately one duct
length. The dashed and vertical linpas
were added te emphasize this veloeity
profile.

These pgor results are cauzed by
advective flux approximations that
require z velocity eomponent located
inside an obstzele. In Flg. 5C we
used zero values for thege velpecities
and as s conseguence an
unrealistically low flux wag computed
that eventually produced the
artificial voundary layer. To correct
thia defect a simple deviee is
required; the difference expressions
for all fluxes are formulmted in terms
of velocity derivatives. Then, ail
the derivatives at interfaces are sat
to sero. In this way all boundaries
become free-slip boundaries. (When
viscous szhear stresses are wanted they
can be added as separate force
contributians.] A repeat calculation
of the duct problea using this
boundary treatment is shown in

Fig. 5D. liere wo see the flow now
remains nicely unitform, even though
the c¢alculatiun was turtner

complicated with a rop—uniform mesh

spacing in the horizental dipection.

The naxiwun velogity cowponens
computed in Pig. 5D is acvually 1.5%
larger than the initiel horizontal
velocity. This small discrepancy
arises becauge there are a few cells
where the fractional volume open for
fluid iz less than 1€ In the code we
sotewhat arbitrarily set any cell face
arge or cell volume that is lesz than
1% open to be z zero ares op Zeto
volume. Consegquently, at these
locations small perturbatione modi £y
the otherwise uniforw flow. The 1%
eutoff on fractional areas and volumes
has been found o we a usefwl
practical limit, This example iz a
good illustration c¥ the stability of
the FAVOR scheme when used with & wide
range of fractional volumes.

V. Examples

4ll the examples described in
this section were cobtained using the
HYDR-3P program [11]. This program is
a gensral purpoee analysis tool for
compressible or incompressible flow
that wses the FAVOR method to provide
2 geaeral geometric modeling
capabllity. TFor incompressible flows,
the program uses the Volume of Fluid
{YOF) tschnique to track free aurfaces
and fwo-fluid interfaces.

A. Potential Flow arcund a Cylindar

As m first demonstration of the
uaefulness of the Fractional
Area/Volume Obstacle Representation
method, we have computed the potential
fiow about an impulzively aceelerated
ceylinder. More specifically, the
Euler eguations were solved for the
impulsive acceleration. of flow from
reat to a uniform speed about a fixed
cylinder. Since the velocity field
generated inone time step iy
proportional to the gradient of a
scalar {the pressure) and satis®ies
the continuity equaticn, the resulting



flew 1= potential flow. If the fluid
starts frof rest, the theoretical
tinertial) drag coefficient [12]
skouid be 2.0 which garisea from the
coubined effect of an aoceleration
needed to set the fTluid into motion
and #n acceleratlion needed to
=2staklizh flow about the cylinder.

Far this eslculation the mesh
used 15 illustrated in Fig. 6. The
iarge mesh reglon minimiges influences
from the boundmries, but the cylinder
is only resclved by about 4 to § cells
across its radius. A generatgor
progran, wihich was used to
automarvicully set the fractional arsas
and volumes, produced a volume for the
cylinder that was (.58 smaller than
the exact-vplume,

Figure 5B shows a portion of the
computed potential velocity field in
taz immediate vicinity of the
cylinder. Ihe computed inertial drag
coefficient based on the accelsration
that set the flow into motion in one
tine step was 2.0%, or 2.0% larger
than the theoretical value. Thig is
remarkably good conmsidering that
preasure forces on the cosraely
defined cylinder were aimply computed
uging cell-centered presaurea times
the adjacent cell face areas occupied
by the obatacle.

B, Cylindrigal Tank Slosah

Io show the effectivenessz of the
FAVOR method for problems having free
surfaces we have investigauted the
problem of fluid slosh in a right
circular ¢ylinder. For low amplitude
sloshing there ls an anelytle theory
#ith which to make comparisons., This
15 an ideal test cage because the
gecmetry can be medeled exactly using
eylindrical ¢oardinates or
approxjzated witn the fractional
argas/volumes of the PAVOR sechnique
in & Cartesian coordinate aystem. A
“hird poesibility is toc use a
Cartesian mesh witn cells either fully
open or fully blocked to produce a
stepped-boundary thas approximately
defines the c¢ylinder. Thess three

case3d are illustrated in Fig. 7. In
the middle wlot, the curved boundary
actually uzed in the PAVOR caleulation
iz not ahown by the method used to plos
the surface peraspective.

The slosh problem consists of
shaking the tank Sinusecidally in a
herizental direction and measuring the
fluid height at the =side wall.

Beeauss of aymmetry only one half of
the tenk needs o be modeled. Pigure
8 phows a comparison of the firat two
methodg in terms of the time histories
of the computed fluid heights. Thers
iz no significant difference in the
results obtained with the eylindricsl
megh and with the Cartesimn mesh using
the FAYOR echeme. However, the
c¥lindrical mesh caloulmtion Tequired
about 10 times more computational time
because the small cells near the
certral axis required g smaller time
step o maintain stability. Thus, the
FAYOR method ia seen to work extremely
well and, for this example, reguired
an order of magnitude less JPU time.

The relatlvely peor performance
of the third method, which used z
atepped boundary approximation, is
ahown in Fig. 9. Finally, Pig. 10
shows that either af the firat two
resulta are in cloge agreement with
linear thesory 113]. (The time shi®t
between the two curves in thiz plot is
only sbout one computational time
step.)

Total computationgl time on a CO0
7600 computer for 589 mesh cells and
172 time cycles was 2.B7 min using the
Cartesian mesh. [In the cylindrical
megh 795 celle were used and the time
required for &77 time cycles was 39
min, ).

C. &pherical Tank Slssh

A problem closely related to <the
above is elesh in m apherical tank
when it is shaken norizontally. FPor
the 0% filled cagse there is alao &
linear theory with which to make
comparison [14]). UDasing PAVOR to
define the spherical tank in a



rectangular, Cartesian grid, we
rroduced the results shown in Pig. 11.
fiere the romputed and theoretical
?luid heightg a% the side wall are
almost indistinguishable, which again
confirme the effectivencss of the
FAV¥OH method.

L. Wigley Model 18054

Lo illustrate the use of the
FAVOR method for ship-wave resistance
problems, we caloulated the flow about
an lompulsively started Wigley Modsl
18054 ship. This preoblem has
rrevicusly besn solved numerically by
varigus researchers. Dawson [15] uged
this medel as a tegt of hig panel
wethod, while Uhring and Telste [16]
solved the transient problem using a
finite-difference solution of the
lingarized potential flow equations.

Following Dawson,
bedy surface by

we dafine the

¥ = 0.7501-29) (1-x%/64)(1-0.6x2/54),

(24)

and huve used his recommendsd fiow
region (3/BL wide, 1/4L upstream and
downstream of the body, and 3/16L
deep, where L is the body length).
Figure 12 shows a crogs aection of the
mesn with The midship section drawn in
lenly one half of the problem is
moieled because of symmetry). The
mesh was chosen to roughly correspond
to Dawson's resalution of B4 panels on
the body and 224 panels on the free
surface. In Qur caga the mesh
consiated of 24x12x10 = 2880 cella ipy
tne flow region. AT time zero the
flow #was impulsively accelerated to a
value carreepending to a Froude number

of u//f gl = 0.503.

Figure 13 shows the computed flow
resiatance, Cp = Rf(ﬂuzLd), in
comparison with the results of Ohring
and Telate, where R is the conputed
foree and d the draft. Except for a
peculiar filuctuation observed around
.79 body traversal times, the
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computed wave resistance goes almost
meonotonically to a steady value that
is slightly below the experimentally
obeerved value of 0.0044 (lower dashed
line in Fig. 13). The fluctuation is
probably a2 numerical artifact, bhut

ita exact origin has not been
determined. A second calculation a% a
Froude numbder of 0.45, Fig. 13, did
not exhibit this preblem. In thisz
cage the computed wave resistance lies
between the thin ship prediction and
the axperimentally observed valus.

It is interesting that we do not
gee the cacillatory transients
cbeerved by Chring and Telste. This
may be due tg the non-linear troatment
and more exsct body boundary
conditiona that we have used. It ig
known, for example, that nonlinsar
advection effects can have a smoothing
influence on wave interacticna. The
wave profile computed along the body
in the G.50% Froude number cmae is
shown in Fig. 14. Here the agreement
along the stern half of the body ig
2o0d, but along the bow nalf the wave
helghts are not as good a8 one would
degire. In particular, the height of
the bow wave 1ls under predicted. This
could have been a consequence of using
the Wigley hull ahmpe sbove the atill
water level {SWL), If the modsl tomts
used a straight-sided model above the
SWL, one would expect to aee a larger
tow weve, Unfortunately, no
information was available to us
regarding the actual model gecmetry in
thia region.
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Filg. 5. Dizgonal duct problem. {4)
Cuct orientation in mesh. (B] Initial
uaniform flew. () Qalculated flow
showing wall effect. (D} Calculated
flow with wall bouwndary condition
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Three waodels for cylindrieal
{4} Cylindrigal coordin-
{B}) FAVOR method in Cartesian

{C) Stepped boundary in
Cartesian coordinates.
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