Drug Particles

Modeling Nasal Passages

Nasal drug delivery system, a promising non-invasive means of administrating drugs, poses numerous design challenges. If the spray particles are too large they tend to deposit in the anterior portion of the nasal cavity which reduces the effectiveness of the drug. If the particles are too small, a majority of the particles could pass directly to the lungs wasting most of the dose. For some drugs it is desirable to target a specific region of the nasal cavity like the olfactory region, which has a potential of delivering drugs directly to the brain. Designing a successful nasal drug delivery system requires optimizing various factors such as drug particle size, particle speed, spray angle, and nozzle insertion depth. Using FLOW-3D, the effects of the various design parameters on the system can be easily studied by running a series of simulations.

This simulation shows the trajectory of spray particles through the nasal cavity. Particles are colored by size, where red indicates the largest particles and blue the smallest. The simulation shows that the smaller the particles are, the deeper they penetrate into the nasal cavity. The smallest particles then exit the nasal cavity and go further into the respiratory system.