Digital Microfluidics

Electrowetting is the process of changing the surface wetting properties using electric fields. Digital microfluidics is a field of microfluidics where electrowetting is used to control and manipulate discrete fluid droplets. This idea is inspired by digital microelectronics but instead of electric current, discrete (or digitized) droplets are used to move a certain quantity of fluid or a reactant contained within over a certain distance in a certain time. Digital microfluidics finds applications in various biochip designs because of their high re-configurability and ability to speed up the process through massive parallelization.

The most important surface wetting property is the contact angle between the fluids and the surface. FLOW-3D’s powerful surface tension model, in conjunction with the electrokinetic model, is used to capture the wetting dynamics in digital microfluidics processes such as di-electrophoresis, thermocapillary actuation (actuation through temperature dependent surface tensions) and electrowetting itself.