Continuous Flow Microfluidics

Continuous flow microfluidics is the manipulation of liquid flow through fabricated microchannels without breaking continuity. Fluid flow is established by external sources such as micropumps (e.g., peristaltic or syringe pumps) or internal mechanisms such as electric, magnetic or capillary forces. Continuous flow microfluidics finds applications in a variety of applications including micro- and nanoparticle separators, particle focusing, chemical separation as well as simple biochemical applications but they may not be the method of choice when a high degree of control is required.

Some of the processes or devices that fall in this category and have been successfully simulated using FLOW-3D are Joule heating, liquid gating, microfluidic circuits, electro-osmotic valves, particle focusing, sorting and separation, point-of-care (POC) capillary flow devices and patterned surface devices.