Lost Foam

Lost foam casting continues to grow in popularity among casting companies because it enables them to produce near-net-shaped components of high complexity with thin walls and other fine-scale features, parts that require fewer gaskets to assemble. And, since there is little need to use binders in the sand, the sand used for their molds can be re-used, saving more money. For the process to be successful there must be a high degree of control. To help casters address some of these difficult problems, FLOW-3D Cast has special models to simulate the lost foam process. With these models, a user can simulate the filling of a lost foam mold as well as the subsequent solidification of the metal. More importantly, FLOW-3D Cast allows the user to predict where folds or other defects associated with trapped foam products are likely to be located.

Filling Simulations

Many defects in castings are caused by the trapping of air at the melt/air interface as it flows into the casting cavity and breaks up. The lost foam casting process reduces defects by filling the casting cavity with a rigid foam that burns away when the melt contacts it. This keeps the melt from intact. FLOW-3D Cast‘s lost foam casting simulations provide engineers with the insight necessary to design filling process parameters, such as pour temperature and pressure, gate sizes and locations and foam properties.

Modeling Solidification

Simulating the solidification process aids in predicting and controlling defects such as segregation and micro- and macro-porosity which, in turn, affect the mechanical properties of the cast product. The image shown is from a simulation of the solidification of an aluminum V-6 engine block cast using the lost foam process. The figure shows the location of shrinkage porosity after solidification.

Lost Foam Videos