Home      |     Contact Us      |     Users Site SEARCH:       


Sturgeon Successfully Navigate Fish Ladder

Challenge:
Improve existing fish passage to enable sturgeon to climb, even during high flow rates.

Results with FLOW-3D:
Using numerical simulation, AECOM Tecsult inc. was able to verify model accuracy and then redesign the fish passage to conditions suitable for sturgeon to climb. Follow-up studies showed that the sturgeon successfully navigated the fish passage even at higher flow rates than the normal range.

Using FLOW-3D, AECOM Tecsult inc. was able to improve a fish passage design that allows sturgeon to successfully navigate the ladder without using physical modeling. Experimental work on the site was essentially ruled out due to the site's limitations and the expense it would entail, so it was critical that FLOW-3D's numerical modeling results provide accurate information.

FLOW-3D CFD simulation results merge with reality.
CFD simulation results merge with reality.

Details of models run including mesh extents,number of computational cells and mesh resolution.
Details of models run including
mesh extents,number of computational
cells and mesh resolution.

AECOM Tecsult inc. numerically models fish passage

A fish passage was built in 2005-2006 by SEBJ (Hydro-Québec) on the Eastmain River in James Bay, Quebec, Canada. Follow-up studies conducted in 2006 and 2007 showed an unsuccessful use of the fish passage by sturgeon, while other species of fish were able to climb the ladder. Two main problems were identified with the existing fish passage: the low attraction of fish and high water velocities. AECOM Tecsult inc. engineers decided to carry out a numerical modeling study with FLOW-3D in order to find the solutions to these problems.

Redesigning the fish passage

AECOM Tecsult inc. engineers ran three models to determine the best design changes for the fish passage:

            FLOW-3D case study: AECOM Tecsult fish passage mesh data


FLOW-3D case study: AECOM Tecsult fish passage before design optimization work
Flow in fish passage before
design optimization work.


Fish passage specifications (before renovation)


FLOW-3D case study: AECOM Tecsult fish passage (fig. 1) FLOW-3D case study: AECOM Tecsult fish passage (fig. 2) FLOW-3D case study: AECOM Tecsult fish passage (fig. 3)
Figure 1 – 45% of flow in fish passage
shows velocities that are too high
for the sturgeon to navigate.
Figure 2 – 10% of flow in fish passage
shows below the 1.8 m/s criteria
required for sturgeon to navigate.
Figure 3 – Tests were made with
different additions of blocks (pink)
and deflector plates (black) to find
an optimum configuration.

Validation of the numeric model

After running the CFD models, the engineers validated the numeric results against experimental data. FLOW-3D results were compared to hydrological records comparing surface elevation. 80% of 124 measured water velocities were in good agreement. Locations that were not were in good agreement were in highly turbulent regions where two different measurements at the same location were significantly different.

Excellent agreement in flow-rate prediction of spillway behavior between FLOW-3D and measured physical model values.
Velocity comparisons of measured data and FLOW-3D at specific locations.

Meeting the criteria — modifications to flow rates

The engineers decided to modify the fish passage walls in order to reduce the flow from 45% of flow to between 15 and 20% so that the fish would not go straight to the weir. Figure 2 shows a significant velocity reduction with 10% of the flow in the fish passage compared to Fig. 1 with 45% of the flow in the fish passage. Figure 3 shows the addition of blocks and deflector plates to slow the flow. The criteria that was set was a max velocity of 1.8 m/s. Overall flow conditions are well represented by the model as shown in Fig.s 1 and 2.

Conclusion

AECOM Tecsult inc. engineers were able to validate the accuracy of their numeric models and using the information gleaned from FLOW-3D, redesign the fish passage to conditions suitable for sturgeon to climb and avoid the high costs associated with on-site testing. Follow-up studies in the summer of 2008 showed that the sturgeon are successfully navigating the fish passage even during high flow rates.

Acknowledgements

This material was provided by Jean-François Mercier, ing., Manager, hydraulics and hydrology at AECOM Tecsult inc.

For more information, contact Flow Science.

^ back to top